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Let My be the mean operator on the unit sphere in R”, n>3, which is an analogue
of the Steklov operator for functions of single variable. Denote by D the Laplace—
Beltrami operator on the sphere which is an analogue of second derivative for
functions of single variable. Ditzian and Runovskii have a conjecture on the norm of
the operator 0°D(My)",m>2 from X = L” (1<p<oco) to itself which can be
expressed as

T sup{[|0°D(Mo)" | .y -0 € (0,7)} = 0.

We give a proof of this conjecture. © 2002 Elsevier Science (USA)
Key Words: ultraspherical polynomials; spherical harmonics; mean operator.

1. INTRODUCTION

Suppose n € N and n>3. Let Q, = {(x1,...,x,) ER":x] + -+ +x2 =
1}. For a function f € L(£,) define

N/OY fy dya X€Qn,
© oo’

where D(x,0) ={y € Q,:x-y >cos0}, 0 € (0,n) and
0
D(0) = |D(x, 0)] = |21 / sin" 2t dr.
0

We call My the mean operator on the sphere.
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For a function f* € L(Q,), its Fourier—Laplace expansion is

3 vl),

k=0

o0

where Y (f) is the “projection” of f on the space 7 of spherical
harmonics of degree k. Actually,

Yi(f)(x) = el 5P (x) = e / S0V (xy) dy,

where

() (n+ 2k — 2)(n + k — 2)!
2 (n+k—2)kl(n—2)!

Cnk =

and Pj}(¢) are the normalized ultraspherical polynomials

) y i
" P (1) _T(EHC(k+1) #5303
PA(Z) - ;7;3@) = I"z(k+nfl) sz : (t) (—1<t<1),
Pk 272 (1)

where P,(C“’ﬁ) are the Jacobi polynomials.
If f,g € L(2,) and g has the expansion

S —k(k +n - Vil

k=1

then we call g the second derivative of f and denote it by D(f), where D
means the Laplace—Beltrami operator.

For these basic concepts we refer to [WL]. The concept of spherical
harmonics can also be found in [SW, Chap. 4, Sect. 2]. The Laplace—
Beltrami operator is called the “‘spherical Laplacean” in [St, Chap. 3, Sect.
3]. For Jacobi polynomials (including ultraspherical polynomials) very
detailed materials can be found in [Sz, Chaps. 4, 7, and Sect. 7.32, §].

Ditzian and Runovskii [DR] proposed a conjecture which can be stated as
follows: Let m € N,m > 2, then

Jim sup{[|D(Ma)" |z 10 € (0,7)} =0, (1)

where || - [[ y y) denotes the operator norm from X = LF(&,) (1<p<o0) to
itself.
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Our purpose is to prove this conjecture. Define
T,.(0) = °D(My)"  (m > 2).
We rewrite (1) as the following theorem.
THEOREM. For X = I7(Q,) (1<p<0)

i sup{]|Tou(0)]] 10 € (0,7)} =0,

2. PRELIMINARIES

Let

1

WX(O,Q)(arccos(l)), re(—1,1).

ho(l‘) = D

We see that M) is a convolution operator with kernel /4y, i.c.
M1 =f o) = [ SOl dy, x <0,

Hence My is a multiplier operator with the multipliers

ho = {ho(k)}72,
where

~ 1 0
ho(k) = —/ P! (cos t)sin" 2 ¢ dt.
ff sin"2rdrdo "
We see that hAg(O) = 1. Applying Rodrigues’ formula (see [WL, p. 23,
Theorem 1.2.1], or [Sz, p. 67]), we have for k > 0

~ sin"" !0
ho(k) = P2 (cos 0). 2
(&) (n—1) ['sin™2rdr * ((cos ) @

Hence for f € L(,) and m > 2, we have

Yi(Tw(0)(S)) = _k(k+n_2)02(%(k))mv k=0,1,2,... . 3)
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For a function /' € L(Q,), we denote its Cesaro means of order 6 > —1
by

N A& ZA

N k=0
where A,‘i denote Cesaro numbers which are given by

s T(k+o+1)

CTe+nrkrny 07 h

It is known that when & > 52 and X = I/(2,) (1<p<oc) we have

sup{||afv|\(X‘X) :N € Z,.}<B(d) <0,

where B(0) denotes a constant depending only on ¢ and X (see [WL, p. 50],
or [So, p. 47]). We will make use of this result.

Let {uy},—, be a sequence of numbers. Define Aup = wy, Auy = A'uy =
U — Uj41 and A-/+luk = A(A-iuk), ] = 1,2, e

LEMMA 1. Suppose | <p<oc and f € LF(Q,). Let {ux};-, be a sequence
of real numbers such that

Iim u, =0
k—o0

and
S AT wlAp = M <oo (4)

with £ € N, n+ 1> > /= "52. Define

)= 3 (A ) Lol (1)),

k=0

Then

llgll, < Cup MI|f1l

where C,,, is a constant depending only on n and p, and

Yi(9)(x) = w Yie(f)(x), k=0,1,... .
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Proof.  Since supy ||ay (f)]|, < Cppl|f1], for n + 1= > 52 we know, by (4),
that the series

S (A ) ALl () ()

k=0

converges absolutely in L7(2,) and ||g|[, < C,, M|| f]],-
Fix k € Z... Since the projection Y} is a continuous operator from L?(Q,,)
to L”(Q,), we have

0]

(A ) 47 Y (1)) (x).
j=0

By the definition of Cesaro means we know that when j <k, Yk(o]‘f(f)) =0
and for j >k

Then we get
Yi(9)(x) = (f}; At qufk> Yie(f)(x)-
=
Therefore, it is sufficient to prove
i AT AL = . (5)
=k

Since limy o tx = 0, we know that for any i € N, limy_o | Al uy| =0
and

(o @]
AiUk _ Z AiJrl ;.
Jj=k
Consequently, noticing Y _, A4, = A4 we get
oo oo 00 oo J
¢ ‘- 01 g1 41 1
Do T <Y Y AT AT =Y AT Y Af
k=0 k=0 =k =0 =0

I
gk

| A1 uj|Af <00.

>
Il

0
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Inductively, one can prove that for all 0<i</,

Z | AT | AL < 0.
k=0
This implies
Jim | Ay ldl =0, 0<i</.

For any two sequences of numbers {u } ;. {vk }1—, We have the following
Abel transformation formula:

m+1 m m+1

Z Ul = Z Auy, Z Uj + Upp 1 Z V.

If we know >/ wivr € R and limy, o thy 41 ZZZOI vr = 0, then passing to
limit, we obtain

oo 00 k
E Up Uy = E Auy, E vj,
k=0 k=0 j=0

which will be the Abel transformation formula for our use.
Now using the Abel transformation once for our sequence {uy},- in the
lemma dnd a specml sequence {v; = r*}72, with 0<r<1, noticing Z] o U

=% ‘A , we get

Jj=0

Writing v = 7o A) " and applying the Abel transformation once
again, we get

S =3 (3.
=0 7=0 =0
Note that
J J

SEESIDIIIES 3D ITWIED ST

k=0 k=p
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Then we get

iwgi“%%ifij
Jj=0 j u=0

j=0
So, using the Abel transformation inductively £ 4 1 times, we get

o0

5 () - 5 (55 )

J=0 k=0 \ j=k

j=0
O<r<l.

Comparing the coefficients of 7%, we get (5) and complete the proof. 1

We know (see [Sz, (4.1.1)])

(,8) (k + o+ 1)
P (1 .
(1) = a4+ DI'(k+1)
Now we define
(o)
P t
Ql(:ﬁ)(t) _ (ka’[;)( )
P(1)

LEMMA 2. If a>f> — 1, then there is a constant B(w, ) depending only
on o and f such that for k>1

I, 0<0<m,
1 =2
107 (cos ) <4 k2 (6)
B(a, T
%’ §<0<n7
(k(n—0))""2
and, in particular,

1, 0<0<m,

[P (cos 0)] < B(n) 0 (0,n), (7)
(k sin 0)2

where B(n) denotes a constant depending only on n.
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Proof. By formula (7.32.2) in [Sz, p. 168]

N —

k+
meﬁWm>4@<u=<kq>~H if ¢ = max(x, ) > —

and formulas (4.1.1) and (4.1.4) in [Sz, pp. 58, 59]

>

o, k + o o, q R4
%WU—<k>, PP () = (=) PP (=)

we see that, under the condition «>=f 2"—537 we get the first estimate

in (6).
We apply formula (8.21.18) in [Sz]: for ;<O0<m —

Y 1 1 i
Pl(c’/j)(COSQ)Z ; l(cos((k+a+§+ )9_“42’271)
Vrk(sin 9)*2(cos 92

1
+ 0 (k sn 9) ) '
r(k,o,p,0)

The term O(-—) can be written as =22 where [r(k, o, B, 0)| < B(a, B) for
B(a, B) being a constant depending only on o and 5. Then we see that the
second and third estimates in (6) are valid for 0 € (},7 — ). Hence by the
first estimate they are also valid for 0<0<} and 7 — ;<0 <.

Applying (6) to the case . = f§ = %, we get (7). 1

3. FURTHER LEMMAS
Define
g (m, 0) = —k(k +n — 2)0%(hg (k)" (8)
For simplicity we write

sin""'0

(n—1) fg sin" 2

¢(m7 0) = _62< Zdt) ) lrbk(mv 9) = (sz%(cos 0))m’

and hence, using (2), we have

ug(m, 0) = k(k +n—2)p(m, 00, (m,0)  (0<0<n). (8")
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LEMMA 3. Let m € N, m > 10 + n. Then for any f € L(Q,),

Tw(0)(f) = u(m,0)Yi(f Z A" (m, 0) AL} (f).
k=1
Proof. By (7) we have roughly (for 0 € (0, 7))

i (m, 0)] < (B(n,0))"k~"% < (B(n, 0))" ™",
where here and in what follows B(n, 8) denote constants depending only on

n and 6 which may have different values in different occurrences. Of course,
forj=1,...,n+ 1 the estimates

| W (m, 0)| < (B(n, 0))"k™"2 <(B(n,0))"k ™"

hold. So, the conditions of Lemma 1 are satisfied and hence Lemma 3 is
valid. 1

LEMMA 4. When m > 10

sup{||Tm(0)\|(X7X) e [g,n)}gan)n— .

©I3

Proof. Throughout this paper we use C(n) to denote constants
depending only on »n which may have different values in different
occurrences.

By Lemma 3 we have

T (O)]](x x) < C(n Zk”lé‘"“ 0)]-

Since 0 € [5,7), we have

0 z n+ly (L
(n—l)/ sin”_ztdtz(n—1)/zsin”_2tdt: (I{l (2)>\/E.
0 0 ©)
Write ¢ = n — 6. Then we get
[plm, )| <732 (sin &) " (9)

We fix the constant B(n) in (7) of Lemma 2 as b = B(n) > 1. Define

b b
— . < = N —_— .
I {kEN'k\sin(n—())}’ I {kEN'k>sin(n—0)}
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When k € I, we use the estimate |, (m, 0)| <1 (Vk € N) and hence by (8')

m

lug(m, 0)| < (n — 1)k (sin &)~ D" =272,
Since
n+l
A"“uk(m, 9) = Z C,‘;+] (*l)vukJrv(mv 0)7
v=0

we get, by (10)
4" Vg (m, 0)| < C(m)k2 (sin &) 3.

Therefore, we get (for m > 10)

3 KA g (m, 0)] < Cn) a2 < Clnyn 2.
kel
When k € I, ie k> 3/ f, we apply (7) of Lemma 2. Then we get
bm
Wi (m, 0)| S ————
(ksin &)2

and hence by (9)

n—1 mn77+2(n — l)kzbm

luge(m, 0)| < (sin &)
(k sin é)
Therefore
m 2pm
A7 g (m, 0)] < Cm) sin &)~ 3P
(ksin¢)2
So we get

3 KA e (m, 0)| < Cyn 2 S KRN < Clnyn

kel kel

A combination of (12) and (15) yields the conclusion of the lemma.

4. THE CASE 0<0<}

In what follows we assume 0 € (0,%). We may assume m > 10 + n.

(10)

(11)

(12)

(14)

(15)
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In order to find a suitable estimate for |4""u; (m, 0)| we first establish the
following lemma.

LEMMA 5. Let me N, m > 10 +n. Assume {h(u)}ie;, p=1,...,m,
are sequences of numbers. Then

A (ﬁ hk(,u)> = ii(ﬁ hk(&,...,é_,—,@), jeN, (16)
u=1 ]

where the numbers hi(¢y, ..., {;, 1) are defined inductively as follows:

I (1) when 1< u</ty,
hk(elmu) = Ahk(:u) when w= Ela (17)

1 (i) when £ <pu<m,

hie(yy .. 4, 1) when 1<pu<{,,
hic(lry o b, 1) =< Al (by, ... 0, n)  when = £, (18)

hies1 (1, ..o, 4, 1) when £ <p<m.
Proof. 1t is easy to verify (16) for j =1, i.e.
n=1 (=1 \u=1

where (¢, ) is defined as in (17). Suppose (16) is valid for j. Then
we have

s (ﬁ hk(ﬂ)) — ii A (ﬁ hk(él,...,éj,u)>.
u=1 p=l

a=1  4=1

But by the result for j = 1 we have

A(H hk(ﬁ],,&,ﬂ)) = Z H hk(£1a"'7€j7£}'+lau))a
st Gt il
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where i (¢1, ..., 4,41, 1) is defined in (18). Then we have proved that (16)
is valid for all j € N and finish the proof. 1

Let us now estimate |4/ P{™3(cos 0)|, j=1,...,n+ 1. We apply formula
(4.5.4) in [Sz, p. 711

patip) (x) = 2 (k+o+ 1)P§:’ﬂ) (x) — (k + I)Pl((?_/i) (x)
k 2k +o+pf+2 1 —x
and get
() B () 2k+ot B+2 e
Qka (x) — Q/zH (x)=(1- X)W Qka (x). (19)
In particular, with o = f =251, we have
42 42 2k+n+1 (zjv%)
P (cos 0) — Pyii(cos0) = il (1 —cos0)Q, (cos0). (20)

Applying (19), (20) inductively and making use of Lemma 2, we get

‘ B—"jﬂ when k0>1,
|4 P2 (cos 0)| < (ko)2 Jj=0,1,....n+1, (21)
B¢  when kO<1,

where B > 1 denotes a constant depending only on n.
Using the constant B in (21), we will treat the cases k0 > 2B and k0 <2B
separately.

LemMA 6. Let me N, m > 10n and 0<0<3. If 0<0<5 and k0>2B
with B the constant in (21), then

[SS1R

| A" (m, 0)| < C(m)ym™ 1o+ <£> , (22)

where C(n) denotes a constant depending only on n.

Proof. Recall (see the proof of Lemma 4)

up(m, 0) = ¢(m, 0)(k(k +n— 2, (m,0).



214 DAI ET AL.

For any sequence u; = aib; we can easily verify by induction that

n+1

Ay = Z Cl o\ N agnir ;A" by (23)

Applying (23) with a = k(k +n —2), b = yr;.(m,0), we get
A"y (m, 0)
= ¢(m, 0) (4™ Y (m, 0)agsnir + (n+ 1) 4" (m, 0) Aay.,,

nn+1)
2

+

A" N, (m, B)Azak+,,_1>
=¢(m, 0)((k+n+1)(k+2n— )4, (m,0) + (n+ 1)(=2k —3n+ 1)

x A" (m, 0) + n(n + 1) A" ", (m,0)).
Hence
4" g (m, 0)] <3(n + 1)*[(m, 0)| (K| 4"y (m, 0)] + K| 4™ (m, 6)
+ 14" Ny (m, 0)]). (24)

We apply Lemma 5 by writing /i = hi(u) = Pi 3 (cos0), u=1,...,m.
Then by (16) we have

N (m, 0) = Z (Hhkel,.. ,)) (G=n—1,nn+1).
b= =

6=

(25)
In our case, by (17) we have
I (1) = hye when 1< </,
hie(by, 1) =  Alie(p) = Ay when p = £y, (26)

hk+1 (,u) = hk+] when £, <usm,
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and then by (18)

hie (1, 1) = Iy when 1 <p<min(4,4,),
Ahy (b, 1) = Ahy when u =¥ </,
Al (€1, 1) = hyeyy when ) <p</;,
Al (8, 1) = Ahy when ¢, = u</y,
by (01, o, 1) = § Al (6, ) = A%y when p =) = 0, (27)
Ahy (b, 1) = Ahgyy when £ <u = £,

/’lk_H(f],,u) = hk+1 when €2<,u<€1
hk+1(€1,u) = Ahk+1 when £2<,u = 51
hi1 (6, 0) = hin when £y <l <p.

From (26) and (27) by using induction we conclude that for all j € N
hk(zl,.,£j7[u) S {hS,Atthrj,[:S:k,k—i‘ 17...,k+j, t= 1,7]}

Furthermore, by induction we see that in each product

{00

the factors having form “A;” appear totally m — j times and the sum of all
degrees “1” over all factors having the form A'fy.;_, is exactly j. In effect, for
any (41,...,4) (j<n+1) we define

Il(gla"'aE/) = {:u:hk(glv"'yejmu) € {hk7hk+17"'7hk+f}}7

12(617...,@') = {,u:hk(ﬁl,...,fj,,u) S {Atthrj,l:l: 1,7]}}

Then the cardinality of I, is exactly m — j. Hence by (21) we have

o
“\wo?)

I e, )| <

nel
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Meanwhile, by (21)

IT 7er, )| < Bé))i
wels (k0)2
Then we get
o B0/
H (b, 0, )| < :
i (k@)(m7]+l
Then by (25) we get
Bym 0 <2 a1 (k0>2B)

(kQ)WﬁjH)?

Substituting (28) into (24) and observing |¢(m, 0)| <0, we obtain

B™ n—HHﬂJrl
4" g (m, 0)) <9(n + 1) T

(m—n)n

(k0)

and complete the proof. 1

Now we consider the case 0<k0<2(n+ 1)B.

LEMMA 7. Let m € N, m > 10n and 0<k0<2(n+ 1)B, then

|hA )< 1- 10<n+2 (k@) when 0<k0<3,
N T when sl <k0<2(n+ 1)B,

where 6(n) =1 — W~

Proof. From the formula

d 71 _k(k—l—l’l—2) -2
dth([) E— P

(28)

(see [WL, p. 31, Corollary 1.2.8] or [Sz, p. 81, (4.7.14)]) and the
Lagrange mean value theorem we know that there is a value & € (0,0)

such that

1 — Pj(cosf) = lc(lc+—’l_2)PZf%(cos &)(1 —cos ).

n—1

(29)
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Hence
0<1— P!(cos 0) < (k).
So, if 0<k0<1, then

3
P (cos0) 21. (30)

Of course (30) is also valid for P”+2(cos 0). From (29) applying (30) to
P2 (cos &) we derive

§<P}§(cos 0)<1 % (k6)* when 0<k0<%.

Then we get
1 1
< pit? <] - — 2 <kO<=
<P (cos0)<1 001 +2) (k0O) when 0< k0\2 (31)
By (2) and (31) we have
~ 1 ’ 1
<l—— <kO<:.
lhg (k)| <1 001 +2) (k0) when 0<k0 5 (32)

When 5155 <O<2(n + 1) By, ie. 55y <k0<2(n+ 1)B, we have
~ 1 0
(k) =1 ——/ (1 = P'(cos 1))sin" 2 ¢ dt
foe sin” 2 ¢ dt Jo g

1
1 2(n+Dk . e
<1 —ﬁ/ oD (1 — Pi(cos ¢))sin" % ¢ dt
Jo sin" = tdtJo

1
- 1 /2(n+l)k k(k+n—2)

¥ sin" 2 1de Jo n—2

t
X ( / P (cos u)sin u du) sin" =2 ¢ dt.
0

Applying (30) we get

n+1)k —
7fg . 12 d/ H M(/ P cosu)51nudu>s1n” 2t dt
o Sin" " tdtJo n—2

>n 11/ HkM /ésinudu sin" 2 ¢ dt
0" 0 n—2 0 4
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1

-2 -1 /2 k
Zk(k—Hl )3n — /(H) 2sin2£sin"—2tdl
n—2 401 ) 2

noa— 1l
>3(}’1 — l)k(k +I_11— 2) (2) /2(n+l)k P> 12 .
8(n—2)0" n) Jo (2(n+1)’nB)""

Therefore, when 5l <k0<2(n +1)B,

1

ho(k) <1 = ——————.
O G
Thus
~ 1 0 )
—hy(k) =1 —7/ 1 + P} (cost))sin" ~ tdt
) 7 sin"2 ¢dt Jo ( 8

L n—2
k
1—%/2 7<2> tnizdt:l_;—l
fO m=2dt Jo 4\ 87’6"72(1(0)”

7n*B

8(nB) - (2(n+1)*zB)"™*

X

1

lhg(k)|<5(n)<1,  when

Then we get for o(n) =1 —

mgk@gZ(n +1)B. (33)

A combination of (32) and (33) completes the proof. 1
LemMMmA 8. Let m € N, m > 10n and let B be the constant in (21). Then

Clrym™ 10" (1 = g (k0" when 0<k0 <555,

A" g, 0)] < 1
C(n)m"1" (5(n))" when 5l <kO<2B,

where 6(n) =1 — W~

Proof. Applying (23) with ay = k(k+n—2), by = (hAg(k))m we get
A"“uk(m, 0)

n+1)

S <A”+1bkak+,,+1 + (n+ DA"bpdagsn + n( A"lbkAzakM_])
= —0*((k+n+1)(k + 2n — 1) 4™ (hy(k))"

+ (n+ 1)(=2k = 3n+ 1) 4" (hg(k))" + n(n + 1) 4" (he(k))™).
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Hence
| A" e (m, 0)] <3(n + 1)70° (K2 4™ (g (k)" | + K| 4" (o (K))"|
+ 14" (ha(K))™)). (34)

Now we repeat the same argument as in the proof of Lemma 6. This time
we apply Lemma 5 to hg(k) We take hg(k) in the place of /i (n) =
hg( ), u=1,...,min Lemma 5. Then by (16) we have

Z Z(Hhk Oy it )) (j=n—1,nn+1),(35
4=1
where, by (17),
hAg(k) when 1 <pu</,

hie(6y, 1) = { A(hg(k)) when =0y, (36)
f;\g(k+1) when (; <u<m,

and then by (18)

hie(ly, 1) = hy(k) when 1<u<min(4;, ),
Al (61, 1) = Ahg(k) when = £ <0,
Ah(0y, 1) = ho(k+1)  when £, <pu</,
Al (6, 1) = Ahg(k) when 6, = p< 1y,
he(l1, b, pt) = § Al (0, ) = A2hg(k) when p =, = 05, (37)
Ah(0y, 1) = Ahg(k + 1) when £, <p = 05,

/’lk_§_1(f17 ) }/I\Q(k+ 1) when €2</1<€1
st (61, 1) = Ahg(k + 1) when f<pu = £,
s (01, 1) = hg(k +2)  when £, <, <p.

From (36) and (37) by using induction, we conclude that for all j € N
by, ... ) € {ho(s), Ahg(k +j — ) :s =k k+1,... k+j, t=1,...j}.

Furthermore, by induction we see that in each product

Hhk Oy )
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the factors having form “hAg(s)” appear totally m — j times and the sum of all
degrees “r”” over all factors having the form A'hy(k +j — 1) is exactly j. In
effect, for any (¢1,...,¢;) (j<n+ 1) we define

L. ) = {uthe(y, . G, 1) € {ho(k), ho(k + 1), ... hg(k +j)}},

Ly, .. ) = {u:h(b, ... bu) € {d'hglk+j—1):t=1,...j}}.

Then the cardinality of I is exactly m — j. Hence by Lemma 7 we get

(1 — 7o5(k0)*)"™ when 0<kO<5

I mtern....tm| <§ 0 T (o

nel (5(1/[))"1 K when 2(111 1)\k0<2
On the other hand, we write

sin" 10
h(0) = I
(n—1) [y sin"" tdt
It is obvious that |(0)|<1. By (2) we see
ho(k) = h(0) P13 (cos 0).
Hence
A'hy = h(0)A" P (cos 0), selkk+1,... k+n}.
Then by (21) we have
neh

Combining (38) and (39) we get

ﬁ (01,.. w|< (-5 n+2 (k@) " BH)J when 0<k9<2 (n+1)

ol B 3(n))" (BOY when <kO<2B.

2(n+1)

Then by (35) we get

R m" (1 — 5L 2(k9) )" (BAY when 0<kO<q;
W (ho(k)" <] (; " " (40)

m"™1(5(n))" (BOY when 2<n+1><k0<23.

Substituting (40) into (34), we complete the proof. 1
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For the constant B in (21), m > 10n and 0 € (0,%), we define
1
Jy=J1(m,0) ={k e N: kO<m 4},
1 1
= = N 4 <— y
Jy Jz(ﬂ’l,@) {k eN:m 4<k0 2(l’l+ 1)}
J3:J3(m,0): {kGNZ

b
(n+1)
Jy = J4(m,0) = {k e N Zk022B}.

<k9<2B},

Take a function n € C*[0,00) such that yo ;j <n<yp - Write N =

Assume J; #0. [ ]
1
and define 4

1
Om4

(=Y ()10, rew@).

k=0

Write || || instead of || |[y (or [| ||y y)) for simplicity. We have (see [WL,
Theorem 4.6.3, pp. 191, 192], or [R])

ID(nf)II< Cm)N?[| £1],

where here and in what follows we use C(n) to denote constants depending
only on n and the choice of # which may have different values in different
occurrences. Hence for any f € X

C(n)

1T0(0) ()| = 071 (Mo)" (D(nyf )l < N

LAl (41)

Now we have for any f € X
Tn(0)(f) = Tw(O)(f — 1y (f)) + Tn(0) (xS ).
Then

C(n)
Jm

NTwm(O) NI <Tm(0)(f = ny (I + LAAI- (42)
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Write g =f —ny(f). We know ||g||<C||f]|| with constant C depend-

ing only on the choice of 7 (see [WL, p. 162], or [R]). Applying Lemma 1,
we get

Z A"y (m, 0) AL ol (g).

Note that Y(g) = Yi(f) —n(%)Ye(f) = 0 when k<N. We get

Tw(0)(9) = (Z Y+ Z) A"y (m, 0) 45} (9)- (43)

ke, kel kedy

By Lemma 6 we have for m > 10n

Z A" (m, 0) ALt (g)

kedy

n+1 kn9n+l - B
Clmm" gl > ((k0)3>

kedy
n+

1
2By ILA1I- (44)

< Cln)

From (42)—(44) we derive

1 mn+1
IOl <co| 3 14 e, 0" + (—+—m) ,
ke | J7) v (2B)

0<9<g. (45)

Now we apply Lemma 8 for k € (J,|JJ3). By Lemma 8, when k € J,

1 m
n+1 n+1n+1 _ 2
|A" g (m, 0)] < C(n)m"™ 0 (1 0012 (k0) )

1

< C(n)ym"1 o™+ (1 - W)m

Define

y(n) = sup{ (1 —m>ﬁ:m>n}.
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Then we see 0<y(n) < 1. Hence
S 1A e (m, 0) " < C(m)m™! ((m)) "
ke,

When k € J3, by Lemma 8§,

|An+luk(l’l/l, e)l < C(n)mi1+10n+l (5(’1));11’

where 0<d(n) =1 — =< 1. Then we get

1
(2(n+1)*nB)

> 14 g (m, 0)[k" < C(mym" ! (S(n))".

keJs

Substituting (46) and (47) into (45), we obtain

mit!
1 Ton(0)]] <C(n) (mnﬂ(y(n))ﬁ"‘mnﬂ(é(”))m+\/lﬁ+W
0<0<g.

Lemma 4 tells that

m

T _m
sup{[|Ton(0)l| iy 0 € [5:7) < Clmya
Combining (48) and (49), we obtain (for m > 10n)

Sup{[| T (0)|l(x x : 0 € (0, 7)}

mn+1
<C(n) < )Y 4 (6(m)" Vlr% 2By

which completes the proof of the Theorem. 1

)

m

+7n

2),
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(47)

(48)

(49)

(50)

Remark. The theorem can be extended by the same argument without
any difficulty to the case when taking the fractional derivatives of the
Laplace—Beltrami operator instead of the Laplace-Beltrami operator itself.
Precisely, let r > 0 and D2 denote the derivative operator of degree r which is

defined (see [WL, p. 171, Definition 4.3.1]) by

£ =3 ki +n -2,

k=1
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where 2 = —1. Then

lim sup{]0" D2(Mp)"|| y.y):0<0<n} = 0.
m—o00 ’

For this extension we have only to replace k(k +n—2)0* by (k(k+
n—2)0°):.
In [D] a different definition is given for which the result follows from the

results for powers of the Laplace—Beltrami operators and a Kolmogorov-
type inequality in [D].
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